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Abstract We derive equations of motion for a new model to introduce temperature effects 
into Davydov’s ID,) theory for solitons in proteins. The temperature model used so far suffen 
h m  conceptual difficulties, although it wn reproduce exact quantum Monte Carlo (QMC) results 
qualilaiively correctly as was shown in pm I1 of this series. In our model we populate the 
lattice wilh a thermal phonon dishibution and deriveequations of motion in the presence of lhese 
thermal phonons, instead ofderiving equations of motion from a thermally avenged Hamiltonian 
as in Davydov’s theory. This procedure seems to be more reliable than Davydov’s averaged 
Hamiltonian approach. For derivation of the equations of motion the EuIer-Lagrange method 
is wed. Numerical applications to soliton dynamics at 300 K reported and comparisons of 
the m l t s  obtained with available exact QMC data are discussed. It is found that Davydov’s 
method agrees belter With the QMC results than does the newly derived method. although the 
lmer method seems to be physically more reliable. 

1. Introduction 

For the mechanism of energy transport through proteins, Davydov and Kislukha 111 and 
Davydov [2] suggested that the energy of about 0.4 eV released by hydrolysis of adenosing 
triphosphate could be transported in quanta of the amide-I (mainly C-O stretch) vibration 
(about 0.2 ev). The CO groups participate in hydrogen bonds which form chains parallel 
to the axis of a-helical proteins. Thus the amide-I vibration interacts with the acoustic 
phonons in these chains. The region in which the vibrational energy is localized can travel 
as a soliton along the chain [1,2]. In the original theory [l], an UnSUk was used for the 
wavefunction (102)) which treats the lattice classically. At zero temperature it has been 
confirmed that Davydov solitons exist for parameter values appropriate for proteins [3]. 
Also their stability against disorder along the chain was studied [4]. The investigation of 
temperawe lead to controversial results. For a short review see part II of this series [5] 
and for details see, e.g., [6-13]. Also there and in [14-22], shortcomings of the different 
Umuk states and of the derivation of equations of motion from them are discussed. 

We also used the Langrangian method described in 1171 to obtain correct equations of 
motion for the IDl) unsutz state from the thermally averaged Hamiltonian derived in [2,151. 
In this investigation [19,20] (part I of this series is [20]), as well as in our previous studies 
within the 102) state, summarized in [I91 we found that Davydov solitons should be stable 
at 300 K if the spring constant of the hydrogen bonds is larger than previously assumed. 
Since all our results indicate that the hydrogen bond spring constant should be large to 
allow soliton formation at 300 K, we reconsidered the suggestion of Scott [3,5,24] that 
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in onechain simulations the spring constant should be larger by a factor of 3, in order 
to simulate the three coupled chains present in real protein =-helices within a one-chain 
model. For an excellent review of the state of art of work on Davydov solitons the reader 
should consult Scott's recent paper [23]. We could confirm Scott's conclusion (in the case 
of the I&) ansatz) about parameter values also for excitations that he did not consider, and 
for which his analytical considerations do not hold. However, within the ID,) model we 
found that for the symmetric A mode the equations of motion for one spine and for three 
coupled chains are identical [24] (part III of this series). In simulations on three coupled 
chains we found that also in this case the soliton stability at 300 K requires a hydrogen 
bond spring constant larger than roughly 30 N m-I. However, since the value of 13 N m-l 

is taken ffom crystalline fomamide where only hydrogen-bonded molecules vibrate, while 
in proteins covalently bound peptide units are moving, we consider 311-40 N m-' for this 
constant as not unrealistic. 

There are doubts whether the Davydov concept of using a thermally averaged 
Hamiltonian to derive equations of motion from it is in agreement with statistical mechanics. 
There is the possibility that it may provide results which are even qualitatively misleading. 
Therefore we performed [5] a comparison of our results obtained with the averaged 
Hamiltonian method with the exact quantum Monte Carlo (QMC) results of Wang et al 
[21]. We found that the msatz of Davydov is quantitatively incorrect; however, it describes 
the qualitative features reported in 1211 correctly. The [ L I Z )  state models and the partial 
dressing theory of Brown and Ivic [ZSJ fail to reproduce the results of [21] even qualitatively. 
Owing to the conceptual difficulties with Davydov's temperature model and its failure to 
reproduce quantitative QMC results at least approximately we present in this work a new 
model for incorporation of temperature effects into 101) theory. Numerical applications of 
the new model as well as comparisons of the results with the QMC data are discussed. 

2. Method 

The Hamiltonian on which Davydov's soliton concept is based is [I] 

(1) 

In equation (I), 6: and 2,, are the usual boson creation and annihilation operators [3], 
respectively, for the amide-I oscillators at sites n (figure 1) .  From infrared spectra the 
ground-state energy of an isolated amide1 oscillator can be deduced (EO = 0.205 eV). 
Usually for all parameters in equation (1) the site-independent mean values are used. The 
average value for the dipolddipole coupling between neighbouring amide1 oscillators is 
J = 0.967 meV. The average spring constant of the hydrogen bonds is usually taken to 
be W = 13 N m-l, is the momentum and 9. the position operator of unit n. The 
average mass M is taken to he that of myosine ( M  = 1 14mp; mp is the proton mass). The 
energy of the CO stretching vibration in hydrogen bonds is a function of the length r of the 
hydrogen bond ( E  = EO + X r ) .  For X the experimental estimates are 35 pN and 62 pN. 
Ab-initio calculations on formamide dimers usually lead to X = 30-50 pN; however, with 
small-basis-set ab-inirio calculations, even negative values for X were obtained (see, e.g., 
[23] for a review and references). 
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Figure 1. 
bonded channel in a protein. 

Schematic pictnre of a hydrogen- Figure 2. Survey of the (X. W) parameter space for an initial 
excitation at site 24 in a chain of 25 units 5 300 K using 
a model with a thermal phonon population of the lattice: 0. 
dispersive system; e, vavelling soliton; 0, crossed. slowly 
dispersing travelling solibry wave: @, trapped exatation. 

The Hamiltonian [ 1,2] in a second quantized form including disorder is given by 

6; and & are creation and annihilation operators, respectively, for acoustic phonons of 
wavenumber k. The translational mode has to be excluded from the summation. Note that 
in the simulations reported in section 3 we again use the asymmetric interaction model 
where only the coupling of the oscillator n to the hydrogen bond between n and n + 1 in 
which the oscillator takes part is considered. For our comparison with QMC data [21] in 
section 4, however, we had to introduce also the symmetric interaction as well as cyclic 
boundary conditions [SI since the only available exact QMC results [21] were obtained for 
this case. @k denotes the eigenfrequency of the normal mode k and U contains the normal 
mode coefficients. w and U are obtained by numerical diagonalization of the mahix V with 
elements 

V", = ([W"(1 - 8 " N )  + w"-I(1 - 8nd18"m - Wn(1 - 6"N)8m,"+1 

- W.-l(l - s ~ l ~ s m . . - l ~ ~ M " M , ~ - L ' z .  (3) 

The form of V implies that we use free chain ends and N units. Other boundary conditions 
such as cyclic [ 151. as used in section 4 (see [5] for details) or fixed chain ends 1161 require 
another form of V [SI. 

In our modified ansuk we use a lattice already prepared with a thermal phonon 
distribution IT) as we did in case of the classical 1 0 2 )  m u t z  state [la] instead of starting 
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from a thermally averaged Lagrangian: 

P I ,  T) = ~ a " ( t ~ 6 : l o ) e ~ " l T ) .  
n 

(4) 

Here IO), is the exciton vacuum, la.(t)12 are the probabilities of finding an amide-I 
vibrational quantum at site n, and Gn is a unitary displacement operator: 

Gn eXp(%) & = z[bnk(f)@ - b:k(f)ikkl. (5) 
k 

Here Ib,k(t)12 is the number of phonons excited by exciton-phonon coupling in the lattice 
at site n and wavenumber k, and IT) is a coherent state with IBkI2 thermal phonons in each 
normal mode k: 

17) = eXp(t)lO), 'f = E ( B &  - BZik). (6) 
k 

[ & I 2  is computed according to Bose-Einstein statistics: 

(7) 2 [ & I 2  = I/[eXp(fIWk/ksT) - 11 E U,. 

1%) is an exact solution of the time-dependent Schrodinger equation 

w a / a t w k )  =fIWk(i$k +;)IQ) (8) 

if 

B&) = IBkIexp(-ioxt). (9) 

Further 

CnkITk) = exp(.ik)exp(fk) IO), = exp(&, fkl)exp(%k + fk) IO),. (10) 

Here IO), denotes the phonon vacuum. With 

where 
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Thus the phonon part consists of coherent states with amplitudes c&), modulated by a 
phase factor. Then the Lagrangian is given by (see 1171 for details of the method) 

L = ;B((qlaq/ar) - (as /a t iq) )  - H = L? - H + f f i  

.~ 

la&k[(bnk + iwkbd) 
Ilk 

x exp(iwat) - (b:k - iokbtk) exp(-iwkt)]. (14) 

Thus 

+ 2wk[bnkexp(iwkt) - L&exp(-iokt)]] - H n 
and 

H = (01. T l f i l D ~ ,  2') = (Eo + En)la,IZ - J,ah+iD,,,+i - Jn-ra:an-iDn,n-i " i  
4- lanlZ Cfiok{&n[bd f b:k 4- 2VkCOS(Wkt)l f 1bnh2 + U: f 4 

k 

(17) n + u.db.k exp(iwt) + b:k exp(-iwkt)ll 

Dnm = exP C[b:kbmk - $(lbnkI2 + lbmklz) + (bik - b;k)VkeXP(-iWkt) L 
- (brit - b m t h  exp(iokt)l). (18) 

Note, that in contrast with Davydov's model, the exponent in Dnm contains no temperature- 
dependent real part (besides the implicit temperature dependence in the b,k) and thus there 
is nothing like a Debye-Waller factor present. From this, equations of motion are obtained 
with the help of the Euler-Lagrange equations: 

(19) 

In I171 it is shown that for the 101) state the Euler-Lagrange method leads to the same 
equations of motion as projection techniques, time-dependent variational priFciple and 
Heisenberg operator equations, while Davydov's method [15] (treating (DIIHID1) as a 
classical Hamiltonian function) leads to different equations of motion, which do not even 
reproduce special analytically soluble cases (J = 0). 

(d/dt)(aL/aci,") - aL/aa: = o (d/dt)(aL/ab:k) - aL/abik = 0. 

From the Euler-Lagrange equations we obtain 

a H  %an+ $%a, C{(bOkb:, -ekbmk) -2io~v~+2wk[bnkexp(iokt) -bnkexp(-iokf)]] = -. 
k aa; 

(20) 
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After differentiation of H and performing the phase transformation a.(t) = 
uA(t)exp(-iE~t/fi) we obtain the equation of motion (note that we have changed a:, to 
an after the transformation again): 

34 = -(Jnan+lDn,n+l + J n - ~ u n - ~ D n , n - ~ )  + Enan 

- +zn z[(dnkb:k - d;b,k) + 2uk[&k exp(iokt) - qk exp(-iokt)]) 
k 

U. zhwd&a[b.k f bik -k 2vx COS(0Jkt)l -b Ibnklz 
k 

+ uk[bnk exp(iowt) + b:k exp(-iwkt)l). (21) 

From this equation we obtain the expression 

3 +&a,*) = - J. (a;antl 4 ,+t 1 -ana:+ I 4 1,") -&-I @:an- 1 4"- I -ana;- ,J 
(22) 

which summed over n leads to the conservation of the norm of OUT wavefunction. From 
the second Euler-Lagrange equation we obtain 

ihlU,,l2d.k + $%[b,k + Z U ~  exp(-iokt)](+. +ana,*) = (aH/ab:,) -fi@klUn12Uk exp(-iokt). 

(23) 

Substitution of the above result for the time derivative of the absolute square of a. and 
differentiation of H with respect to b:k lead to the equations of motion 

f i b n k  = fiwk(Bnk f bnd - JnDn.n+~  (bnt1.k -bnk)%+l/Qn - Jn-1 &..-I (bn-1.k -bnk)%-i/an. 

(24) 

This equation is the same as that for the IDI) state without inclusion of temperature effects 
because the thermal motions of the lattice and those which originate from the coupling 
to the oscillators are separated. Temperature enters only implicitly via the U-, b- and D- 
values. This is the same situation as in the case of the 1 0 2 )  state with a thermally populated 
lattice [12,13,19]. As in that case, also in equation (21) we could formally perform an 
integration over time and the phase &usformation 

+ UJk cos(okf') 6Jk Re[b.k(t') eXp(k0kr')l) dt' . (25) ) 
Then as in case of the [ D z )  state the effects of the thermally populated lattice appear 
explicitly only as site- and time-dependent phase factors at the J,,-values in the equations 
of motion. Because of the denominators a, in equation (24) we have again to start the time 
simulation with an initial excitation of the form described in [ZO]. Note that this approach 
does not start from a thermally averaged Hamiltonian as Davydov's method does, but from 
an initial state with a lattice prepared with a thermal distribution of phonons. 
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f k l  

a 

Figure 3. The probability of finding a quantum of amide-1 vibration I%(r)l2 as a function of 
site n and time f at 300 K for different parameter values: (a) W = 15 N m-', X = 40 pN, (b)  
W = IS"-'. X = 6 0 p N ( c )  W = 30N m-I, X = SOpN;(d) w = 3 0 N  m-', X = 6OpN. 

3. Soliton dynamics 

For the calculations reported below we used a chain of 25 units at 300 K (unless otherwise 
mentioned) and a time step of 1.25 fs. The dynamics were followed over 20 ps (16000 
time steps, 2000 CPU s on a Cyber 9958 computer). In a typical run (W = 50 N m-'; 
X = 100 pN) the norm was conserved to better than 6 ppm and the total energy to better 
than 0.6 MeV. In figure 2 we show the results of our survey of the (X, W) parameter space 
at T = 300 K. 

We recognize immediately that the solitons show up at larger X-values than in case of 
the averaged Hamiltonian model. However, for small values of W we find that, already for 
X-values of around 20-40 pN, dispersing solitary waves are formed, followed by regions of 
dispersive character for increasing X. However, again for W = 30 N m-I, in the important 
region around 5&80 pN, solitons are formed, although they are less stable than in the case 
of the averaged Hamiltonian method [21]. 

To discuss some of the cases in more detail we show in figure 3 the time evolution of 
la,(t)1* for some parameter values. Figure 3(a), which shows the case W = 15 N m-], 
X = 40 pN, gives one of the cases where a soliton has already formed for very small values 
of X, while figure 3(b) (W = 15 N m-I; X = 60 pN) demonstrates that for this larger value 
of X the soliton has already dispersed rather rapidly into a number of travelling solitary 
waves. For W = 30 N m-' and X = 50 pN (figure 3(c)) we observe a solitary wave as 
well as for a larger X-value of X = 60 pN (figure 3(d)).  However, it is obvious that these 
solitary waves are less stable than in case of the averaged Hamiltonian method [21]. Fully 
stable travelling solitons, as can be seen from figure 2, show up for much larger values of 
X than those significant for proteins. 

In figure 4 we present the time evolution of la,(t)l* for the parameters W = 30 N m-I 
and X = 60 pN for different temperatures. We see immediately that the formation of 
the solitary wave is a clear temperature effect, since at T = 0 K (figure 4(a)) the system 
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Figure 4. As for figure 3, but for W = 30 N m-', X = 60 pN and different values of the 
tempenture: (u) T = O  K (b) T = IW K; (c) T =ZOO K, (d )  T =250 K. 

has a dispersive character, while this dispersion is slowed down somewhat at T = 100 K 
(figure 4(b)). At T = 200 K (figure 4(c)) the solitary wave starts to form and at 250 K 
(figure 4(d)) it is clearly visible. Higher temperatures (figure 3(d)) again reduce the stability 
of the solitons. Thus we have to conclude that with increasing temperature in our model 
the thermal fluctuations first of all effectively decrease the parameter J responsible for 
dispersion as in the averaged Hamiltonian model, via their implicit influence on the coherent 
state amplitudes bnk which appear in the real part of the exponents of the coherent state 
overlaps Dnm. However, if the temperature increases further, the fluctuations cause too large 
a disorder in the system to allow travelling solitons to exist. Thus we have in this case a 
window of solitary wave formation starting from 200 K. In figure 5 we show for comparison 
the results obtained with the averaged Hamiltonian model. The case T = 0 K is naturally 
identical with figure 4(a). However, in contrast with the thermal phonon distribution 
discussed above, we see from figure 5(a) that at T = 50 K the dispersion has already 
been considerably reduced and at T = 100 K (figure 5(b)) the solitary wave has started to 
form. At T = 150 K (figure 5(c)) we already observe a clear solitary wave which remains 
qualitatively unchanged up to T = 300 K (figure 3(d); see also figure 5(d)  for T = 250 K). 
However, at T = 350 K (figure 5(e)) the solitary wave has already been destroyed before 
it is able to reach the chain end. Thus the temperature effects in the averaged Hamiltonian 
method are qualitatively similar to those in a thermally populated lattice, but far more 
pronounced. For the averaged Hamiltonian model we observe solitary wave formation 
from a dispersive system at T = 0 K between 150 K and 350 K. The reasons for this 
behaviour are essentially the same as those described above for the thermally populated 
lattice vibrations: first the temperature reduces effectively the parameter J via the coherent 
state overlaps, while a further increase in T leads to too large a disorder owing to thermal 
lattice fluctuations. The effects here are more pronounced because the temperature appears 
explicitly in the real part of the exponents of the D,, (see 1211 for details), while in the 
thermally populated phonon case the temperature appears only implicitly via bnk in the real 
Part. 
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Figure 5. As for figure 4, but for the averaged Hamil- 
tonian model and different values of the temperature: 
(a) T = 50 K, (b) T = 100 K; (c) T = 150 K: ( d )  
T = 250 K; (e) 7' = 350 K. 

Although in both models for temperature effects within the 101) ansafz state we  find 
solitary waves around the parameter values B = 30 N m-' and X = 60 pN, there are 
considerable differences between their stabilities and the sizes of the soliton formation 
window in the ( X ,  W, T) space. Thus to be able to decide which of the models is more 
reliable we performed as in [5 ] ,  for several msatz states. comparisons with exact QMC 
results published in the literature [21]. Thii is the topic of the next section. 

4. Comparisons with quantum Monte Carlo results from [21] 

To be able to do this we introduced periodic boundary conditions and the symmetric 
interaction into our programs, since this was used in [21]. Details of the procedure have 
been given in [5 ] .  Thus we restrict ourselves here to a more qualitative description. We 
concenwate on the parameter values W = 13 N m-l and X = 62 pN as in [21]. We 
started the simulation with a random distribution of one vibrational quantum on a ring of 
25 units again. Then in each time step we determine the site of maximal amide-I excitation 
probability and rotate the ring such that this site is the central site (according to the site 
numbers). Then the quantity A. = qn+l -qn-, is calculated in this rotated coordinate system 
and averaged over time. This time average is then compared with the ensemble average of 
the same quantity obtained by QMC calculations as published in [21]. In 1211 peak values 
of -0.07 A (T = 2.8 K), -0.08 A (T = 7.0 K) and -0.09 .& (T = 11.2 K) are reported. 
This corresponds to coherent structures at 2.8 K, which start to break down at 7.0 K and are 
completely destroyed at 11.2 K. Thus, only highly localized small polaron-like structures 
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Figure 6. Time evolution of the excitation probability 1on(t)12 from an inidally randomly 
distributed amide-I quantum as a function of site n and time I in cyclic chains of 25 units and 
with symeuic interaction, using the ID!) m a t z  sate and a lattice with a thermal phonon 
population prior to the soliton SM for diffmnt temperah" The subfigures (numbered 1-10) 
show six 200 ps p m  of the total simulation time of 2 ns. (a) T = 2.8 K (b) T = 7.0 K ( c )  
T = 11.2 K. 
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Figure 6. (Continued) 

are observed in QMC results. In the case of the averaged Hamiltonian method we have 
found [5] a qualitatively very similar behaviour. At 2.8 K a travelling soliton is formed 
from the random initial condition, at 7.0 K the mobility is strongly reduced, while at 11.2 K 
a highly localized immobile excitation is formed. Although this corresponds qualitatively 
to the QMC results, the peak values of (An) were much smaller than the corresponding QMC 
results and also their variation with temperature is much less pronounced in the averaged 
Hamiltonian case (we found peak values of -0.026 8, at 2.8 K. -0.028 8, at 7.0 K and 
-0.029 A at 11.2 K). These time averages were performed over 3000000 time steps, 
corresponding to 6 ns. After thii time the numbers had converged. 

For the corresponding calculations with thermally populated lattice vibrations we used 
a time step of 1 fs and averaged A.(t) over 200OoM) time steps, corresponding to a 2 ns 
simulation time. Each calculation had to be performed with ten restart jobs using 6.7 CPU h 
each on our Cyber 995B computer. During 2 ns the norm remained conserved to roughly 
1 ppb and the total energy to 0.1 neV. In figure 6 we show the time evolution of Iu.(t)lz 
for the three temperatures considered, each of them in ten graphs covering 200 ps each. 
For T = 2.8 K (figure 6(u)) from the random initial conditions a solitary wave is formed 
which becomes trapped after a mobile phase at the beginning of the simulation. However, 
it is much too broad to be considered as a small polaron-like entity and thus has still to 
be viewed as a coherent structure as found in the QMC results for this temperature. If the 
temperature is increased to 7.0 K (figure 6(b)) the localized structure formed is much smaller 
and less mobile than in the previous case. However, we see that here the localized entity 
is only an intermediate state and is destroyed after longer times by the thermal fluctuations, 
leading to a state with a rather random and fluctuating distribution of amide-I excitation. 
Increasing further the temperature to 11.2 K (figure 6(c)) the intermediate localized state 
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Figure 7. Time average (A.) over 2000000 time steps (2 ns) of the lanice displmmenfs A, 
in the rotated coordinate system for the system in figure 6 at the same tempemtwcs. 

becomes even narrower, but also here is destroyed in the course of the simulation. 
In figure 7 we finally show the averaged quantity (A,) for the three temperatures. Also 

in our case of a thermally populated phonon system the absolute peak values of (A,) are 
far too small compared with the QMC results and are in absolute values even smaller than 
the averaged Hamiltonian values. For T = 2.8 K we obtain a converged peak value of 
-0.0235 A, somewhat smaller in absolute value than the Corresponding average Hamiltonian 
results. However, with increasing temperature the peak value decreases in absolute value 
(-0.0182 A at 7.0 K and -0.0154 A at 11.2 K), while the corresponding QMC and average 
Hamiltonian results increase. However, for the two higher temperatures, convergence is still 
not reached, since the excitation is further dispersing. Since the absolute values of the peaks 
are decreasing, this does not change the conclusion and thus it is not worthwhile to continue 
the calculations until convergence is finally reached. Therefore, we have to conclude that 
the average Hamiltonian model has  better qualitative agreement with the QMC results than 
does the thermally populated lattice model and thus has to be preferred. 

5. Conclusion 

In order to overcome the conceptual difficulties with the average Hamiltonian model for 
temperature effects in the Davydov theory we have derived equations of motion for the 
case when the lattice vibrations are thermally populated prior to the soliton start. We 
found from numerical applications that, in the latter case, solitons are formed at parameter 
values reasonable for protein helices at 300 K, however, these solitons are less stable than 
the corresponding solitons in the average Hamiltonian case. A soliton formation window 
starting from 200 K was found for W = 30 N m-' and X = 60 pN, while in the average 
Hamiltonian model the solitons form between 150 K and 350 K. For lower or higher 
temperatures, respectively, the system is dispersive. Comparisons reveal that the average 
Hamiltonian model qualitatively agrees with exact QMC results as reported in [5], while 
the new model does not. Therefore, we conclude that still our previous results from the 
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averaged Hamiltonian model for one chain [211 as well as for three coupled chains [24l 
should be qualitatively reliable, apart from the conceptual problems with the m a k  of the 
average Hamiltonian model. These results state that, for parameter values which are realistic 
for proteins, Davydov solitons should exist at 300 K. However, one should still look for 
temperature models which also lead to quantitatively more reliable results than the average 
Hamiltonian model. Work along these lines is in progress in our laboratory. 

There are still problems with the quantitative reliability of the I&) ansatz state even at 
T = 0 K. Thus in a forthcoming paper [26] of this series we shall discuss numerically the 
errors introduced by the IDl) ansatz in order to obtain some insight into the reliability of 
results computed with it. 
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